
International Journal of Theoretical Physics, Vol. 29, No. 4, 1990 

Quantum Theory of Measurement and the Polar 
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The measurement-theoretic content of the polar decomposition of an interaction 
is analyzed. It is shown that the polar decomposition arises exactly from the 
strong correlation premeasurement of a discrete physical quantity. 

1. INTRODUCTION 

Kochen (1985) developed a new interpretation of quantum mechanics 
called the witnessing interpretation. In Kochen (1988a) this interpretation 
is further developed under the name of the perspective interpretation of  
quantum mechanics. This interpretation is formally based on the so-called 
polar decomposition of  an interaction. In this note I shall identify the polar 
decomposition within the usual formulation of quantum measurement 
theory, as given, e.g., in Beltrametti and Cassinelli (1981) or Beltrametti et 

al. (1990). I show here that the polar decomposition arises exactly from the 
so-called strong correlation premeasurements of a discrete quantity. This 
formal bridge between the polar decomposition and the usual measurement 
theory points up the difference between the usual Born interpretation of  
quantum mechanics and the witnessing interpretation. Moreover, this bridge 
reveals the dangers in any uncritical application of  the witnessing interpreta- 
tion, and it points out the need for a systematic development of this 
interpretation. 

2. MATHEMATICAL PRELIMINARIES.  
THE POLAR D E C O M P O S I T I O N  

Let H be a complex separable Hilbert space, with the inner product 
(" 1" }. Let L(H) denote the set of bounded linear operators on H (equipped 
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with the usual algebraic and topological structures). The set of all trace-class 
operators on H is denoted as T(H), and recall that it is a Banach space 
with respect to the trace norm H" II1. The set T(H)[  consists of the positive 
(i.e., T >- 0) trace-one (i.e., II TII1 = tr[ T] = 1) operators on H. 

Let Ha be another complex separable Hilbert space. The (Hilbert space) 
tensor product of H and Ha is denoted as H |  The partial trace over 
Ha, say, is the positive linear map 7ra : T (H |  ~ T(H) defined as follows: 

tr[~ra(T)A] = tr[T. A| (1) 
A 

where T ~ T ( H |  A~L(H) ,  and I, is the identity operator on Ha. 
Similarly, we have the partial trace over H, and denote it as ~-. Note also 
that if {~k : k ~ N} c H and {r : K ~ Na} c Ha are orthonormal bases, then, 
e.g., ~'a (T) can be expressed as 

k,K,l 

as {~k | CK: (k, K)~ K X K a} is an orthonormal basis of H |  Here, e.g., 
I~k><~,l is the bounded linear operator on H defined as I~k><~,l(~) = <~,l~>~k, 
~pcH. 

Let ~ be a unit vector of H |  and let Ic~)(c~l, or P i l l ,  denote the 
one-dimensional projection operator on H |  defined by ~.  Clearly, 
P [ ~ ]  e T ( H |  i.e., P [ ~ ] -  0 and t r [P[~]]  = 1. The "reduced states" 
% ( P I l l )  and ~-(P[~]) are also positive trace-one operators on H and Ha, 
respectively. The vector ~ e H |  may, of course, be expressed as 

4) = E c ~ K ~ @ ~  (3) 
k,K 

in terms of the above basis {~k|162 K)~KxKa} .  (Recall also that 
Ick~l =-- I1~'11 = 1, where Ck,, = (~k| O~ld~).) When applied together with (2), 

the formula (3) leads to the following expression for ~,(P[@]): 

k,,~,l 

= E Ic~l=l~.><~.l + Y ck~a,~l~><~,l (4) 
k,K k,K,I 

( k ~ l )  

Similarly, we obtain 

k,K,x 

k,K k,K,A 
(K~A) 

The representations (4) and (5) are the natural decompositions of the 
"reduced states" 7ra(P[~]) and o r (P i l l )  into the rank-one operators I~D(~,I 
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and [r162 [ associated with the chosen orthonormal basis {~0k | r : (k, K) 
x Ka} c H |  Clearly, these decompositions are not the canonical (i.e., 

spectral) decompositions of ~a(P[~])  and of ~-(P[~]) unless the "inter- 
ference terms" in the second summands of (4) and (5) are zero. 

The polar decomposition of ~ e H |  serves to point out an ortho- 
normal basis of H Q H a  such that when ~ is expressed in terms of this 
basis [as in (3)], then the natural decompositions of the "reduced 

A A 

states" Ira(P[qb]) and 7r(P[qb]) [as in (4) and (5)] are exactly the canon- 
ical ones, so that, in particular, no "interference terms" appear in these 
decompositions. 

A 

Though the polar decomposition of qb a H Q H a  was already worked 
out in Kochen (1985), I sketch here the main steps to obtain it. It starts 
with identifying ~ c H |  with a bounded linear map F(~) :  Ha --> H given 
by 

= | 

so that for any ~b ~ Ha, F(~)(~b) = ~ Ck~(I~K [~1)~ k. Then one applies the polar 
decomposition theorem to the map F ( ~ )  to obtain a unique decomposition 
F ( ~ )  = U o V, where V: Ha ~ Ha is a positive operator and U: Ha ~ H 
is a partial isometry [i.e., ]lu~b[[=l[r for any ~bckern(U) • such that 
kern( U)J- = ran( V) [see, e.g., Reed and Simon (1972), Theorem VI.10, p. 
197]. The spectral decomposition of V can now be determined. Indeed, 

^ 2 from = II u(v )ll 2= II W'll 2, tP~Ha, one shows that V 2 is com- 
pact. Then, using the spectral decomposition of V 2, and by the positivity 
of V, V =  (V2) 1/2, one obtains 

V = E v,P, (6) 

where v~>0 for any i =  1 , 2 , . . . ,  N (N  being the number of distinct 
eigenvalues of V, N c t~, or N = oo), v~ ~ vj for any i ~ j ,  and P~ . . . .  , PN 
are mutually orthogonal projection operators on H~. [Recall that the positive 
numbers vi in (6) are indeed eigenvalues of V, and lira v~ = 0, if N = oo. In 
that case 0 is the only possible accumulation point of the spectrum of V.] 
As ~ is a unit vector, it also follows that ~ v~ = 1. 

Now, let {7v :J = 1 , . . . ,  n(i)} be an orthonormal basis of the eigenspace 
~ , where n( i )=d im(P i (Ha) ) .  Then {3'~: i =  1, . . . ,  N , j =  1, . . . ,  n(i)} 
is an orthonormal system in Ho, and 

N n(i) 
V= E v, E P[3'u] (7) 

i = 1  j = l  

[Recall that if {3,u}cI-Ia is not an orthonormal basis, it can always be 
extended to one. The sum in (7) can then be extended to range over this 
basis with the cost that some v~ may then be zero.] 
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As U: Ha --> H is a partial isometry with [I uvoll = II vOll for any ~ ~ Ha, 
the set {~:u : i = 1 , . . . ,  N, j = 1 . . . .  , n(i)}, with ~:0 = Uy~, is an orthonormal 
system in H. But then for any ~ ~ Ha, 

F(~,)(~) = U(V~,) =E v, Z u(P[~,~]~,) =E  v, E (Y~l~')~0- 
which shows that the vector ~ ~ H |  can now be expressed as 

N n(i) 

6= Z Z v,r (8) 
i = 1  i = 1  

This is the polar decomposition of ~.  It is unique exactly when all the 
eigenvalues vi of V are nondegenerate. In such a case we simply have 

r = Z v;~, | Y, (9) 

with P~ = P[y~] for any i = 1 , . . . ,  N. 

Note. Instead of identifying ~, ~ H |  with F(~) :  H a  ---> H, we could 
equally well identify @ with F'((~): H ~ H a ,  where F'(r174 I~,~><~kl. 
Applying then the polar decomposition theorem to F ' (~ ) ,  we would get 
exactly the same expression (8) for qb. [See Kochen (1985).] It is to be 
stressed that the polar decomposition is known in quantum mechanics at 
least since the work of von Neumann (1955), and it is also known as the 
normal or the biorthogonal decomposition. 

From now on, only in order to simplify the notations, I shall consider 
exclusively @ ~ H |  which have nondegenerate (and thus unique) polar 
decompositions (9). This simplification has no implications for the results 
discussed here. 

Assume, then, that ~ ~ H |  has the polar decomposition (9). The 
"reduced states" of @ obtain as their natural decompositions 

~'a(P[r =E v~P[~,] (lO) 
"n'(P[r =E v2p[y,] (11) 

They are simply the canonical decompositions of ~'a(P[~]) and ~-(P[~]). 
To conclude, the polar decomposition of a vector �9 ~ H |  singles out 
an orthonormal system (which can be extended to an orthonormal basis) 
of H Q H a  such that �9 obtains the simple form (9) and the natural decompo- 
sitions of the "reduced states" of P[@] are the canonical ones. 

Let us now turn to the quantum theory of measurement to see how the 
polar decomposition (9) of a (nondegenerate) vector ~ ~ H@ Ha arises there. 

3. QUANTUM THEORY OF MEASUREMENT AND THE 
POLAR DECOMPOSITION 

In the usual Hilbert space formulation of quantum mechanics the 
description of a physical system S is based on a complex separable Hilbert 
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space H. Any physical quantity of S is represented as (and identified with) 
a self-adjoint operator A in H. Any state of the system is represented as 
(and identified with) an element T of T(H)~- of positive trace-one operators 
on H. In this representation the pure states of S appear as the one- 
dimensional projection operators P[~0], r c H, I[~o[I = 1. Occasionally one 
refers also to the unit vectors of  H as the vector states of S. Let B(R) denote 
the family of Borel subsets of  the real line ~, and let EA: B(R)'-> L(H) be 
the spectral measure of the self-adjoint operator A. Any pair (A, T) consist- 
ing of a physical quantity A and a state T defines a probability measure 
E a : B(R) -~ [0, 1], X ~ EA(x )  := tr[ TEA(X)], where [0, 1] is the unit inter- 
val of the real line R. According to the Born interpretation, the number 
EA(x )  is the probability that a measurement of A on S in the state T yields 
a result in X. [For further details of this formulation of quantum mechanics 
see, e.g.,, Beltrametti and Cassinelli (1981).] 

The quantum theory of  measurement is the part of quantum mechanics 
which investigates the measurement possibilities of  quantum mechanics. It 
also investigates the consistency of  the Born interpretation of  the basic 
probabilities EA(x )  of  the theory. 

Following the usual formulation of the quantum theory of  measurement 
as a part of  the theory of  compound systems in quantum mechanics, one 
is led to the following notion of a premeasurement of  a quantity A of  the 
(object) system S. Let Ha be a complex separable Hilbert space (associated 
with the measuring apparatus A); let Aa be a self-adjoint operator in H ,  
(representing the so-called pointer observable of A). Let r162 be a unit vector 
of  Ha (representing the initial vector state of  A), and let U: H |  --> H |  
be a unitary operator (modeling the interaction between S and A). Then 
the 4-tuple (Ha, Aa, ~, U) is a premeasurement of A on S if it reproduces 
the statistics (A, P[~0]), ~0 ~ H, I1~ II = 1, through (Aa, ~-(P[ U(~o @ ~)])),  i.e., 

tr( P[ ~o]Ea(X) ) = tr(er(P[ U( r | O ) ])EA"(x) ) (12) 

for any X ~ B(~). 

Note. I consider here only the so-called normal premeasurements of 
A, i.e., those 4-tuples where the initial state of the measuring apparatus is 
a vector state and where the interaction is given by a unitary mapping. 
These assumptions imply, however, almost no loss in generality [see Busch 
and Lahti (1990) and references therein]. Also, the assumption that the 
initial state of the object system is a pure one is no restriction (Beltrametti 
et al., 1990). Finally, note that it is not necessary to have the same value 
sets X on both sides of  (12). In fact, it is enough that the A value sets and 
the A~ value sets are in one-to-one correspondence. 

The "probability reproducibility condition" (12) expresses simply the 
idea that the probability of A taking a giyen value in the initial state of  S 
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should be the same as the probability of the pointer observable Aa assuming 
the same (i.e., corresponding) value in the final state of  the measuring 
apparatus. 

In order for a premeasurement of  A to be a measurement of A we 
should be able to say, at the end, that the measurement led to a "definite 
result," To obtain this, some further conditions on the interaction as well 
as on the measuring apparatus must be required. This part of the measure- 
ment problem is usually called the objectification problem, and I shall address 
that later. 

To obtain a characterization of the polar decomposition ofa  (nondegen- 
erate) vector state @~ H |  [[O[[ = 1, within the quantum measurement 
theory, it is sufficient to consider a class of  premeasurements of the so-called 
simple quantities, i.e:, discrete quantities with nondegenerate eigenvalues. 

A N Let =~i=1 aiP[r be a simple quantity of the object system S. Here 
N is the number of distinct eigenvalues of  A. The number N may be finite 
or infinite. Let I-Ia be a complex separable Hilbert space with the vector 

space  dimension equal to N. Let {y~ : i = 1 , . . . ,  N} be an orthonormal basis 
of  Ha, and define Aa ~iN_--i aiP[3'~]. Let ~b be a unit vector of Ha. The 
unitary mappings U: H |  ~ H |  for which (Ha, Aa, ~b, U) are pre- 
measurements of A can then be characterized. This is done in Beltrametti 
et al. (1990) (where, in fact the problem is analyzed with a greater generality). 
Here I note only that (Ha, Aa, $, U) is a premeasurement of A if and only 
if U is of  the form 

U ( r 1 7 4  = E  c,~,@ 3,, (13) 

where c, = (~p,]r ~p ~ H, II ~ II = 1, and {~: i = 1 , . . . ,  N} is any (fixed) collec- 
tion of unit vectors on H (Theorem 3.2 in Beltrametti et al. (1990). 

The unit vector U ( r 1 7 4 1 7 4  is the final vector state of  S + A  
when ~o and ~b are the initial vector states of S and A, respectively. The 
final states of  S and A are again given as the "reductions" of  U ( q |  

zG(P[ U( r  @ ~)3) = E Ic, I=P[~,] (14) 

~r(P[ U(tg | O)]) = E (15) 

Clearly, (13) need not be, in general, the polar decomposition of  the vector 
U(~ | ~b). I emphasize that the basic requirement on the premeasurement, 
namely condition (12), does not imply any orthogonality relations on the 
set {~ : i = 1 . . . .  , N}. In spite of this, (13)-(15) are the natural representa- 
tions or decompositions of  ~ = U(~| ~ra(P[~]), and ~r(P[~]) with 
respect to the interaction U. 

The pure states {P[~:i]: i =  1 , . . . ,  N} and {P[~i]: i =  1 , . . . ,  N} singled 
out by the premeasurement (Ha, Aa, ~b, U} are the natural candidates for 
the final pure states of  S and A, respectively. In fact, it is the task of the 
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objectification problem to justify this. As a step toward a solution of the 
objectification problem, consider the premeasurements (Ha, Aa, ~b, U) of 
A, with varying U, which lead to strong correlations (1) between the possible 
values of A and Aa, and (2) between the distinguished pure states P[~:i] 
and P[~h], i=  1 , . . . ,  N. 

A premeasurement (Ha, Aa, ~, U) of A has the strong correlation 
property with respect to states if 

P(P[sr P[~h], U(r174 ~b))= 1 (16) 

for all i = 1, . . . ,  N, and for any initial vector state r of S [for which the 
condition (16) is meaningful, i.e., 0 ~ Ic, F = (r162 ~ 1]. A necessary 
and sufficient condition that (Ha, Aa, ~, U) has this property is that the 
set {~:~: i = 1 , . . . ,  N} is orthonormal. [Theorem 4.1 in Beltrametti et aL 
(1990)]. But this then means that 

= E Ic, (17) 

where {~ : i = 1 , . . . ,  N} is an orthonormal set, and where the phase factor 
of c, = [cile '~ has (for convenience) been incorporated into the vector ~:~. 
The "reduced states" are then 

'Ta (P[ U(~ | = Y Ic,12e[~:,] (18) 

7r(P[ U(~p | ~b)])=Y. I c ,12P[~ , ]  (19) 

As the polar decomposition of a nondegenerate vector @= U(~ |162  is 
unique (modulo the phase factors), one can then conclude that a pre- 
measurement (Ha, As, ~, U) of A which leads to the strong correlations 
(16) gives always, i.e., for any r ~H, II~ll  = 1, the polar decomposition of 
the final state U( r174  of the compound system S+A, and thus also the 
canonical decompositions of the "reduced states" ~'a (P[ U(~ | ~)]) and 
7r(P[ U(~ | r of the component systems S and A. 

To complete the analysis, I next demonstrate that the polar decomposi- 
tion (9) of a nondegenerate unit vector @ c H|  always admits the above 
kind of a measurement-theoretic interpretation. Indeed, let @ = ~ v~i| ~ 
be the polar decomposition of qb~H| Extending the orthonormal 
systems {~:~} and {~} into orthonormal bases, we have the simple quantities 
A=Y.  aiP[~i] and Aa =Y. agP[7~], say. Let ~b be a unit vector of Ha. The 
map ~:~|174 3'i extends to a unitary operator U on H|  [see, e.g., 
Theorem 3.2 in Beltrametti et al. (1990)], such that (Ha, Aa, r U) is a 
premeasurement of A. Let r =Y. v~:~ (v~ S0), so that ~ is a unit vector of 
H. Then @ = U(tp| ~). Clearly, this premeasurement leads also to strong 
correlations. 

The results of this section are summarized in the following corollary. 
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Corollary. A strong correlation premeasurement of a simple quantity 
always leads to the polar decomposition of the final vector state of the 
object-apparatus system. The polar decomposition of any (nondegenerate) 
vector state of such a compound system can always be interpreted as 
resulting from a strong correlation premeasurement of some simple quantity. 

Note. Theorems 3.2 and 4.2 of Beltrametti et al. (1990) show, in fact, 
that a strong correlation premeasurement of any discrete quantity (simple 
or not) always leads to the polar decomposition of the final vector state of 
the object-apparatus system. Moreover, the above justification of the second 
part of the Corollary can also immediately be repeated for any unit vector 
(degenerate or not) of HQH~.  

4. THE POLAR DECOMPOSITION AND THE 
OBJECTIFICATION PROBLEM 

A strong correlation premeasurement (Ha, Aa, 0, U) of a simple 
quantity A singles out the polar decomposition of the final state of the 
object-apparatus system, 

U(~o | qs) = Y~ ciq~i | 7i (20) 

and the canonical decompositions of the final states of the object and of 
the apparatus: 

~ra(P[ U(~ | qJ)])=Y~ [c,12p[~,] (21) 

~'(P[ U(~p | 0)]) = Z [c,]2P[ 7i] (22) 

Assume that an ignorance interpretation of (22) could be given, i.e., 
when the measuring apparatus A is in the mixed state Y~ ]ci[2P[7~] it is, in 
fact, in one of the pure states P[7i], i = 1 , . . . ,  N, the weights ]c~[ 2 describing 
our imperfect knowledge of the actual state of A. This would mean that 
the pointer observable Aa would have, in fact, a well-defined, though 
subjectively unknown, value, namely one of the eigenvalues. Due to the 
strong correlation, this information could then be transferred to the object 
system as well. In other words, the objectification problem would have been 
solved. However, the "if" here is, indeed, the applicability of the ignorance 
interpretation to (22). Though the polar decomposition as well as the 
canonical decompositions are, in the present case, unique and natural, 
the decomposition of, e.g., the mixed state ~ '(P[U(~|  into pure 
components is highly nonunique. In fact, any unit vector 3' 
ran({~r(P[U(~| 1/2) can appear as a pure component in some 
decomposition of ~r(P[U(~Q~b)]) (Hadjisavvas, 1981). This is the 
well-known difficulty behind the objectification problem in quantum 
mechanics. In other words, even though the canonical decomposition of 
~r(P[U(~| in (22) is unique (as the spectral decomposition) and 
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natural (with respect to the measurement  interaction U), it is not the only 
decomposi t ion of  that mixed state into its pure components.  The task of 
the objectification problem is just to find conditions, say on the measuring 
interaction U and on the measur ing  apparatus A, which would show that, 
after all, the natural decomposi t ion of  ~r(P[ U(~p | ~)])  given in (22) is its 
physically relevant decomposi t ion into pure states. 

It is now clear f rom the above discussion that the polar  decomposit ion 
of  an interaction [i.e., of  the state U0p|  does not solve the objec- 
tification problem. It is an alternative way to explicate the result of  a strong 
correlation premeasurement.  

The only systematic solution of the objectification problem within 
quantum mechanics (known to me) is the following. Assume that the pointer  
observable Aa is a (nonconstant) classical quantity of  A, i.e., a quantity 
which commutes  with any other physical quantity of  A. This assumption 
then implies, among others, that the only pure states of  A are the eigenstates 
of  An. Then, clearly, 7r(P[ U ( r 1 7 4  ~b)])= ~ Ic,[2P[7,] is the only decomposi-  
tion of this mixed state into pure states of  A leading thus to a solution of 
the objectification problem. This solution has an ad hoc character and it 
also implies some further problems, especially in the connection of  the 
measurement  interaction U to the dynamic evolution of  the object-  
apparatus system. However,  it serves here to illustrate the objectification 
problem. Moreover,  it shows the consistency of  the Born interpretation of 
the basic probabilities in quantum mechanics. [For further discussion of 
these points, see, e.g., Beltrametti and Cassinelli (1981), Beltrametti et al. 
(1990), and Mittelstaedt (1976).] 

5. C O N C L U D I N G  REMARKS 

Kochen (1985) proposed the witnessing interpretation of  quantum 
mechanics in order "to show that there is a consistent view of  the formalism 
as describing an objective world of  individual interacting systems." I cite 
Kochen (1985) to identify the core of  this new interpretation: 

We now take our major step in the new interpretation. In place of an official 
human observer, we assume that each system acts as a witness to the state of 
the other. When the polar decomposition assigns the mixed states ~ v~P[3'~] and 

v~P[r to the two interacting systems A and S, then A actually has exactly 
one of the properties P[~/i] as witnessed by S, and S has the corresponding 
property P[~:~] as witnessed by A. In other words, if ~ =~ v~:i| %, then A and 
S are in one of the corresponding states 3'~ and r [The citation.is exact, though 
I have adopted here the notations of the present paper.] 

The above citation shows clearly that the very heart of  the witnessing 
interpretation is in the claim that when the compound system S + A is in 
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the vector state ~ = U ( ~ |  viii| yi, then S and A are in one of the 
pure states P[~i] and P[y~], i = 1 . . . .  , N. As was demonstrated in Section 
4, such a conclusion does not follow from the polar decomposition. This 
then clearly shows that the witnessing interpretation is, indeed, a radical 
deviation from or addition to the usual Born interpretation of  quantum 
mechanics. 

As a technical remark, note that the above form of the witnessing 
interpretation clearly assumes that the polar decomposition of  ~' is non- 
degenerate. Whether the nondegeneracy assumption is crucial for the wit- 
nessing interpretation remains to be seen. Some recent results (Kochen, 
1988b) seem to indicate that this is not the case. 

Let us consider more closely the witnessing procedure. From Kochen 
(1985, 1988a) it becomes evident (cf. also the above citations) that "strong 
correlations," which are apparent in the polar decomposition of ~ = 
U ( ~ | 1 7 4  play an important role in witnessing. But as 
already pointed out, this cannot be all of  the witnessing procedure. Indeed, 
for a given degenerate ~ = U(~ | ~) = Y~ viii | y~ one may always construct 
a ~ in ran(zr~(P[U(~| ~ for all i=l , . . . ,N,  and a y 
in ran(~r(P[U(r174 y ~ y ~  for all i = 1  . . . .  ,N ,  such that 
p(P[sr], P l y ] ,  U(~p| 0)) = 1. Thus, in order that A, say, may witness that 
S is in the state P[~k], say, there must be a method for A to determine first 
its own pure state. Indeed, the witnessing interpretation assumes that the 
states available for A, say, are exactly P [ y ~ ] , . . . ,  P[TN] and, in addition, 
that A should be in position to decide in which of the possible states it 
actually is. 

The above discussion invites us to compare the witnessing procedure 
with the old London and Bauer (1983) (the original French text dates from 
1929), interpretation of quantum mechanics. This interpretation started with 
the assumption that quantum mechanics is a universally valid physical 
theory, applying thus to the observers as well. To solve the objectification 
problem, London and Bauer went on to assume that the observer can by 
"introspection" and with his "immanent knowledge" always rightly create 
his own objectivity, and thus identify his own pure state. With reference to 
the polar decomposition ~ =  U ( ~ | 1 7 4  the "observer" A, 
indeed, would, according to London and Bauer, have the right to say that 
"I  am in the state P[Yk]"! The citations from Kochen (1985) indicate that 
the witnessing interpretation should not be identified with the London-  
Bauer interpretation. 

Neither in Kochen (1985) nor in Kochen (1988a) are the conceptual 
foundations of  the witnessing interpretation of quantum mechanics worked 
out in a systematic way. Hence, it is outside the scope of  the present paper 
to study the consistency of that interpretation or to try to evaluate its relation 
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to the Born interpretation. A careful conceptual reconstruction of the 
witnessing/perspective interpretation of quantum mechanics is important, 
and the more so since in Kochen (1988a) it is shown that, in fact, the 
witnessing interpretation leads to some predictions which are beyond the 
usual theory. In particular, it was shown in Kochen (1988a) that the 
witnessing interpretation of quantum mechanics implies that the only statis- 
tics available for systems of identical particles are the Bose and the Fermi 
statistics. 

In a series of papers Goernitz and von Weizs/icker (1987a, b) studied 
different interpretations of quantum mechanics. In particular, in studying 
the witnessing interpretation of quantum mechanics they came to the con- 
clusion that this interpretation "is essentially identical with the Copenhagen 
interpretation." As was shown in the present paper, the polar decomposition 
of an interaction has, indeed, a measurement-theoretic interpretation in 
terms of a strong correlation premeasurement. On the basis of this paper 
the claim of the essential identification of the Copenhagen interpretation, 
in any of its historical forms, and of the witnessing interpretation appears, 
however, too strong. 
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